Subfamily-specific posttranscriptional mechanism underlies K(+) channel expression in a developing neuronal blastomere.

نویسندگان

  • F Ono
  • Y Katsuyama
  • K Nakajo
  • Y Okamura
چکیده

Na(+) and K(+) channels are the two key proteins that shape the action potentials in neurons. However, little is known about how the expression of these two channels is coordinated. To address this issue, we cloned a Shab-related K(+) channel gene from ascidian Halocynthia roretzi (TuKv2). In this animal, a blastomere of neuronal lineage isolated from the 8-cell embryo expresses single Na(+) channel and K(+) channel genes after neural induction. Expression of a dominant negative form of TuKv2 eliminated the native delayed rectifier K(+) currents, indicating that the entire delayed rectifier K(+) current of the neuronal blastomere is exclusively encoded by TuKv2. TuKv2 transcripts are expressed more broadly than Na(+) channel transcripts, which are restricted to the neuronal lineages. There is also a temporal mismatch in the expression of TuKv2 transcript and the K(+) current; TuKv2 transcripts are present throughout development, whereas delayed rectifier K(+) currents only appear after the tailbud stage, suggesting that the functional expression of the TuKv2 transcript is suppressed during the early embryonic stages. To test if this suppression occurs by a mechanism specific to the TuKv2 channel protein, an ascidian Shaker-related gene, TuKv1, was misexpressed in neural blastomeres. A TuKv1-encoded current was expressed earlier than the TuKv2 current. Furthermore, the introduction of the TuKv2-expressing plasmid into noninduced cells did not lead to the current expression. These results raise the possibility that the expression of TuKv2 is post-transcriptionally controlled through a mechanism that is dependent on neural induction.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Posttranscriptional Regulation of BK Channel Splice Variant Stability by miR-9 Underlies Neuroadaptation to Alcohol

Tolerance represents a critical component of addiction. The large-conductance calcium- and voltage-activated potassium channel (BK) is a well-established alcohol target, and an important element in behavioral and molecular alcohol tolerance. We tested whether microRNA, a newly discovered class of gene expression regulators, plays a role in the development of tolerance. We show that in adult mam...

متن کامل

Neuroprotective Effect of Mitochondrial Katp Channel Opener Upon Neuronal Cortical Brain of Rat Population

Purpose: So far there is no effective drug therapy to prevent neuronal loss after brain stroke. In the present study we studied effects of The Mitochondrial K-ATP channel regulators on neuronal cell population and neurological function after ischemia reperfusion in the rat. Materials and Methods: Rats temporarily subjected to four vessels occlusion for 15 minutes followed by 24 hours reperfusi...

متن کامل

Transmembrane Helix Straightening and Buckling Underlies Activation of Mechanosensitive and Thermosensitive K2P Channels

Mechanical and thermal activation of ion channels is central to touch, thermosensation, and pain. The TRAAK/TREK K(2P) potassium channel subfamily produces background currents that alter neuronal excitability in response to pressure, temperature, signaling lipids, and anesthetics. How such diverse stimuli control channel function is unclear. Here we report structures of K(2P)4.1 (TRAAK) bearing...

متن کامل

O3: Pharmacological Modulation of Thalamic KCNQ-Potassium Channels: Insight from Knock-out Mice

The channels belonging to the KCNQ gene family consist of 5 different subtypes, which assemble as pentameric channels. The KCNQ2-5 subunits are highly expressed in the ventrobasal thalamus (VB) where they function primarily as KCNQ2/3 heteromers. They underlie an outward potassium (K+)-current, called M-current (IM), which provides a hyperpolarizing drive, thus regulating neuronal excitability....

متن کامل

Differential expression of genes encoding subthreshold-operating voltage-gated K+ channels in brain.

The members of the three subfamilies (eag, erg, and elk) of the ether-a-go-go (EAG) family of potassium channel pore-forming subunits express currents that, like the M-current (I(M)), could have considerable influence on the subthreshold properties of neuronal membranes, and hence the control of excitability. A nonradioactive in situ hybridization (NR-ISH) study of the distribution of the trans...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 19 16  شماره 

صفحات  -

تاریخ انتشار 1999